Transposition-Based Method for the Rapid Generation of Gene-Targeting Vectors to Produce Cre/Flp-Modifiable Conditional Knock-Out Mice

نویسندگان

  • Hilkka Turakainen
  • Jonna Saarimäki-Vire
  • Natalia Sinjushina
  • Juha Partanen
  • Harri Savilahti
چکیده

Conditional gene targeting strategies are progressively used to study gene function tissue-specifically and/or at a defined time period. Instrumental to all of these strategies is the generation of targeting vectors, and any methodology that would streamline the procedure would be highly beneficial. We describe a comprehensive transposition-based strategy to produce gene-targeting vectors for the generation of mouse conditional alleles. The system employs a universal cloning vector and two custom-designed mini-Mu transposons. It produces targeting constructions directly from BAC clones, and the alleles generated are modifiable by Cre and Flp recombinases. We demonstrate the applicability of the methodology by modifying two mouse genes, Chd22 and Drapc1. This straightforward strategy should be readily suitable for high-throughput targeting vector production.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Promises and pitfalls of a Pannexin1 transgenic mouse line

Gene targeting strategies have become a powerful technology for elucidating mammalian gene function. The recently generated knockout (KO)-first strategy produces a KO at the RNA processing level and also allows for the generation of conditional KO alleles by combining FLP/FRT and Cre/loxP systems, thereby providing high flexibility in gene manipulation. However, this multipurpose KO-first casse...

متن کامل

Efficient generation of long-distance conditional alleles using recombineering and a dual selection strategy in replicate plates

BACKGROUND Conditional knockout mice are a useful tool to study the function of gene products in a tissue-specific or inducible manner. Classical approaches to generate targeting vectors for conditional alleles are often limited by the availability of suitable restriction sites. Furthermore, plasmid-based targeting vectors can only cover a few kB of DNA which precludes the generation of targeti...

متن کامل

High-efficiency Rosa26 knock-in vector construction for Cre-regulated overexpression and RNAi

INTRODUCTION Rosa26 is a genomic mouse locus commonly used to knock-in cDNA constructs for ubiquitous or conditional gene expression in transgenic mice. However, the vectors generally used to generate Rosa26 knock-in constructs show instability problems, which have a severe impact on the efficiency of the system. RESULTS We have optimized the cloning procedure to generate targeting vectors fo...

متن کامل

Cre-mediated germline mosaicism: a method allowing rapid generation of several alleles of a target gene.

Conditional gene targeting uses the insertion of expression cassettes for the selection of targeted embryonic stem cells. The presence of these cassettes in the final targeted chromosomal locus may affect the normal expression of the targeted gene and produce interesting knock down phenotypes. We show here that the selection cassette may then be selectively removed in vivo, using three appropri...

متن کامل

A Modified RMCE-Compatible Rosa26 Locus for the Expression of Transgenes from Exogenous Promoters

Generation of gain-of-function transgenic mice by targeting the Rosa26 locus has been established as an alternative to classical transgenic mice produced by pronuclear microinjection. However, targeting transgenes to the endogenous Rosa26 promoter results in moderate ubiquitous expression and is not suitable for high expression levels. Therefore, we now generated a modified Rosa26 (modRosa26) l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS ONE

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009